Infix, Prefix, and Postfix

Kuan-Yu Chen (i & %)

2020/10/05 @ TR-313, NTUST

Review

Stack

— A stack is an ordered list in which insertions and deletions are
made at one end called the top

« Stack Permutation

top
a / A
n dele /

Expressions

When pioneering computer scientists conceived the idea of
higher-level programming languages, they were faced with
many hurdles

— How to generate machine-language instructions to evaluate an
arithmetic expression

A+B—C+DxE—A}C
Operator (:E&E ¥)

— The first problem with understanding the meaning of an
expression is to decide in what order the operations are carried

out
« Specify the order by using parentheses riority operator
1)
A+(B—-C)+DX(E—A)XC) uhary BIGS
3 *, /, div, mod, and
(A+B)_C+(DXE)_(AXC) 4 +, —, Or, Xor
5

<, <=, =,<>,>=, >, in

Infix & Postfix Notations

o If e is an expression with operators (3 5.1) and operands

N A —

(#H15L7T), the conventional way of writing e is called infix

— The operators come in-between the operands

A+-B—-—C+DXE—-AXC

« The postfix form of an expression calls for each operator to
appear after its operands

AB +~C — DE X +AC X —

operation postfix

T,:=A/B T,C—DE*+AC*—
T,:=T,—C T,DEx+AC*—
T3 = Dx*E T2T3 +AC*—

T4 = T2 +T3 T4AC*—
Ts5:=AxC T,T5—

T6 = T4—T5 T6

Infix to Postfix

o It is simple to describe an algorithm for producing postfix

(1)
(2)
3)

from infix

Fully parenthesize the expression.
Move all operators so that they replace their corresponding right parentheses.

Delete all parentheses.

- Take A+~B —C+ D X E — A X C for example
. ((((A+B)—C)+(DXE))—(AXC))
(5B LO+@xD) - (Ax0)

e AB+C —DE X +AC X —

Infix & Prefix Notations

If e is an expression with operators and operands, the
conventional way of writing e is called infix

— The operators come in-between the operands

A-B—-C+DXE—-AXC

In the prefix form of an expression, the operators precede
their operands

— Take A= B —C+ D X E — A X C for example
. ((((A+B)—C)+(DxE))—(AXC))
N
.dﬁA+B)—Q+{€jEﬂ—{AXCD

infix prefix
e —+—+ ABC X DE X AC A*BIC /*ABC
ABB-C+D=*E-AxC —+ —/ABC * DE * AC

Ax(B+C)D-G ~/¥ A + BCDG

Examples.

Given a infix expression A + B X C — D + E, please write
down the prefix and postfix expressions

A+BXC—-D+E
(A+ (B x0)—(D=+E))
— Prefix
(A+ (B x0)—(D=+E))

— +A X BC - DE

— Postfix
A+ (B C))— (D =+ E

ABC X +DE + —

Examples..

 Given a infix expression (A + B) X C ~ (D — E + F), please
write down the prefix and postfix expressions

((A+B)xC)+ (D —(E =+ F)))

— Prefix
+~X +ABC — D - EF

— Postfix
AB + C X DEF ——-+

Examples...

 Given a infix expression AA—(B > C) V (D V =E), please
write down the prefix and postfix expressions

((AA((B >)V DV (=E)))

— Prefix (AN (=B >)V (DV (=E)))

VAA- > BCV D-E
— Postfix

((AAGB>0)V(DV(aE)))

ABC > - ANDE—-VV

Examples....

Given a postfix expression ABCD +X E + —, please write
down the infix expression

— The pattern for postfix is < operand,, operand,, operator >
= operand,operator operand,

ABCD +X E +~ —
ABCD +X E +~ — C+D
AB X|E + — B x (C+ D)
ABCD +X E =+ — Bx(C+D)+E
A A—Bx(C+D)+E

10

Examples.....

Given a prefix expression —A +X B + CDE, please write
down the infix expression

— The pattern for prefix is < operator, operand,, operand, >=
operandq,operator operand,

—A +X B + CDE
—A +X B+ CDE C+D
—A +X B B x (C + D)
—A+~%x B + CDE BXx(C+D)=+E
—A A—BX(C+D)+E

11

Algorithm to Convert Infix to Postfix.

Step 1: Add ")" to the end of the infix expression
Step 2: Push "(" on to the stack
Step 3: Repeat until each character in the infix notation is scanned
IF a "(" is encountered, push it on the stack
IF an operand (whether a digit or a character) is encountered, add it to the
postfix expression.
IF a ")" is encountered, then
a. Repeatedly pop from stack and add it to the postfix expression until a
"(" is encountered.
b. Discard the "(". That is, remove the "(" from stack and do not
add it to the postfix expression
IF an operator 0 is encountered, then
a. Repeatedly pop from stack and add each operator (popped from the stack) to the
postfix expression which has the same precedence or a higher precedence than 0O
b. Push the operator 0 to the stack
[END OF IF]

Step 4: Repeatedly pop from the stack and add it to the postfix expression until the stack is empty

Step 5: EXIT

12

Algorithm to Convert Infix to Postfix..

« Take A— (B +~C+ (D%E X F) + G) X H for example

e e e e e e e e e e

(/
(/

(+(
(+(
(+(%
(+(%

Postfix Expression

Step 1: Add ")" to the end of the infix expression
Step 2: Push "(" on to the stack
Step 3: Repeat until each character in the infix notation is scanned
IF a "(" is encountered, push it on the stack
A IF an operand (whether a digit or a character) is encountered, add it to the
postfix expression.
IF a ")" is encountered, then
a. Repeatedly pop from stack and add it to the postfix expression until a
A "(" is encountered.
b. Discard the "(". That is, remove the "(" from stack and do not
add it to the postfix expression
A IF an operator 0 is encountered, then
a. Repeatedly pop from stack and add each operator (popped from the stack) to the
postfix expression which has the same precedence or a higher precedence than 0

b. Push the operator 0 to the stack
A [END OF IF]
Step 4: Repeatedly pop from the stack and add it to the postfix expression until the stack is empty
Step 5: EXIT

AB
ABC

ABC/

ABC/

ABC/D

ABC/D

ABC/DE 1

Algorithm to Convert Infix to Postfix...

« Take A— (B +~C+ (D%E X F) + G) X H for example

Infix Scanned Postfix Expression

E (-(+ (% ABC/DE

* (-(+(* ABC/DE%

F (-(+(* ABC/DE%F

) (-(+ ABC/DE%F*

/ (-(+/ ABC/DE%F*

G (-(+/ ABC/DE%F*G

) (- ABC/DE%F*G/+

* (-* ABC/DE%F*G/+
(-* ABC/DE%F*G/+H

~— | I

ABC/DEF*G/+H?™*-

14

Evaluation of Postfix Expression

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Add a ")" at the end of the
postfix expression
Scan every character of the
postfix expression and repeat
Steps 3 and 4 until ")"is encountered
IF an operand 1is encountered,
push it on the stack
IF an operator 0 is encountered, then
a. Pop the top two elements from the
stack as A and B as A and B
b. Evaluate B 0 A, where A is the
topmost element and B
is the element below A.
c. Push the result of evaluation
on the stack
[END OF IF]
SET RESULT equal to the topmost element
of the stack
EXIT

Infix;: 12 = 4
Postfix:12 4 +

oo
Il
_

15

Example

 Consider the postfix expression givenas 934 * 8 + 4 / -,
please evaluate the expression

Step 1: Add a ")" at the end of the
postfix expression

Character Scanned Stack

Step 2: Scan every character of the
postfix expression and repeat

9

Steps 3 and 4 until ")"is encountered
Step 3: IF an operand is encountered,

-
w

push it on the stack

-
w

-
B

IF an operator 0 is encountered, then
a. Pop the top two elements from the

*
‘e

=

N

stack as A and B as A and B
b. Evaluate B 0 A, where A is the

12, 8

topmost element and B
is the element below A.

20

‘e

c. Push the result of evaluation
on the stack

20, 4

-

[END OF IF]
Step 4: SET RESULT equal to the topmost element

~ | |+ |0

-
Ul

B 0 Vo T i U) Vo T (0 V' T U) (R Vo i U T R\
e

of the stack
Step 5: EXIT

16

Algorithm to Convert Infix to Prefix

Step 1: Reverse the infix string. Note that
while reversing the string you must
interchange left and right parentheses.

Step 2: Obtain the postfix expression of the
infix expression obtained in Step 1.

Step 3: Reverse the postfix expression to get
the prefix expression

— Take (A—B = C) X (A + K — L) for example
« Stepl: (L— K +~A) X (C +~B — A)
. Step2: LKA + —CB + A —X
« Step3: X —A +~ BC —+ AKL

17

Evaluation of Prefix Expression

Step 1: Accept the prefix expression
Step 2: Repeat until all the characters

in the prefix expression have

been scanned

(a) Scan the prefix expression
from right, one character at a
time.

(b) If the scanned character is an
operand, push it on the
operand stack.

(c) If the scanned character is an
operator, then

(i) Pop two values from the
operand stack
(ii) Apply the operator on
the popped operands
(iii) Push the result on the
operand stack
Step 3: END

18

Example

« Consider the prefix expression + - 27 * 8 /4 12, please
apply the algorithm to evaluate this expression

Step 1: Accept the prefix expression
Step 2: Repeat until all the characters Character scanned Operand stack
in the prefix expression have
been scanned 12 12
(a) Scan the prefix expression 4 12. 4
from right, one character at a 2
time. / 3
(b) If the scanned character is an
operand, push it on the 8 3, 8
operand stack.
(c) If the scanned character is an * 24
operator, then
(i) Pop two values from the 7 24, 7
operand stack
(ii) Apply the operator on 2 24, 7, 2
the popped operands
(iii) Push the result on the = 24, 5
operand stack
Step 3: END + 29

19

Appendix — Convert Infix to Prefix

Step 1: Scan each character in the infix
expression. For this, repeat Steps
2-8 until the end of infix expression

Step 2: Push the operator into the operator stack,
operand into the operand stack, and
ignore all the left parentheses until
a right parenthesis is encountered

Step 3: Pop operand 2 from operand stack
Step 4: Pop operand 1 from operand stack
Step 5: Pop operator from operator stack
Step 6: Concatenate operator and operand 1
Step 7: Concatenate result with operand 2
Step 8: Push result into the operand stack
Step 9: END

20

Questions?

kychen@mail.ntust.edu.tw

21

